

Energy Efficient Smart Wireless Sensors Network

Prof. Daniela Dragomirescu University of Toulouse, LAAS-CNRS 2013-2014 French Government Fellow of Churchill College, University of Cambridge

Contact: daniela@laas.fr

AAS-CNRS laboratory

- ✤ 600 persons, 220 researchers
- Carnot institute excellent relationship with the industry
- 1500 m² clean room
- Characterization center
- ADREAM platform for cyber-physical systems (from sensors to robots), autonomous

in energy

<u>Our project objective</u>: develop a new platform to accommodate innovative CMOS sensors together with wireless systems to obtain energy efficient, reconfigurable WSN for many real-world applications

Numerous industrial applications

Proposed design approach

- Major driver : energy efficiency
 - IR-UWB communications using nano-metric CMOS technology
- Include new Services such as:
 - Localization
 - Synchronization, time stamp
 - Safety, security
- System approach: Cross-layering between low network levels (PHY and MAC) and high network levels (routing)

Ultra Wide Band Impulse Radio Transmission for WSN

The advantages of IR-UWB

- Low level discontinue transmission
 - * Low power transmission
 - Large frequency band
 - Very short pulse
 - Lower interference probability
 - Fine temporary resolution
 - Localization

- Challenges :
 - Channel estimation
 - Fast DAC/ADC
 - Reception synchronization
 Patent

Mostly Digital Radio Architecture

Reception

From system to hardware

FPGA prototypes

- IR-UWB receiver with localization function
- IR-UWB reconfigurable transceiver in modulation, pulse duration, spectral occupation, data rate and user code
- IR-UWB reconfigurable transceiver at 120Mb/s – state of art: 50Mb/s (Electronics Letters, March 2010)

LAAS-CNRS Laboratoire d'Analyse et d'Architecture des Systèmes

Measurements of first UWB IR emitter performances

FOM: 7.23 to 1.4 pJ/bit

ow power ASICs - emitter/receiver IR-UWB

- UWB-IR emitter CMOS 65 nm STMicro. technology .Low complexity digital design : fast and reliable
- ✤ 1st emitter prototype : without DAC, 1 bit output, OOK modulation
- 2nd emitter prototype: reconfigurability in data rate (up to 1 Gbps), modulation, impulse form, impulse duration.;
- * 3rd emitter /receiver prototype: with DAC/ADC and MAC layer

Simulated power consumption < 40 mW for a data rate up to 500Mbits/s

MAC layer and clock synchronisation for IR-UWB

TDMA MAC layer Clock synchronization for real time measurements

- Static cluster tree network
- No mobile nodes
- Clock synchronization needed

WiDeCS Sync Protocol – LAAS-CNRS

S4

Cross-layer design WiDeCS synchronization

Goals:

- Compensate clock offset
- Estimate transmission latency and compensate its variations

Solution:

- * 2 way ranging
- Periodic update
- Timestamp 1st effective bit instead of 1st bit of preamble

$$\Delta t_{clk} = \frac{(\Delta t_i + \delta t_m) - (\delta t_i + \Delta t_m)}{2}$$
$$\Delta t_{clk} = \frac{\Theta_i - (\delta t_i + \Delta t_m)}{2}$$

LAAS-CNRS Laboratoire d'Analyse et d'Architecture des Systèmes FPGA prototype: TDMA Mac layer, IR-UWB transceiver, clock synchronization

Wireless communicating node FPGA prototype

RedRapids boards with Virtex 4 and DAC/ADC
IR-UWB
TDMA MAC layer
WiDeCs synchronization protocole

FPGA prototype with MAC layer and clock synchronization using UWB transmission

Scope measurement prove clock synchronization → good accuracy in ToF measurements

Time of measurement Master (Blue), Slave (Green)

See demo for clock synchronization and for aircraft in flight test at http://www.laas.fr/~daniela → News (April 2012)

ASIC prototype: MAC layer, clock synchronization and IR-UWB transceiver

- 1 mm² chip with
 - PHY layer: IR-UWB BPSK transceiver
 - TDMA MAC layer
 - Clock synchronization
 - Fast ADC/DAC
 - Mixte SoC
 - Build to interface with RF front-end

SoC Chips

Measurements results

 $P_c = 50 \text{ mW}$

Max data rate: 500Mbps

Energy/bit: 100 pJ/bit (best case) Clock synchronization precission ~ 1 ns

SoC IR-UWB @ 60GHz

60GHz communications enabled by nano-metric CMOS technology

- *Short transmission range and high directivity \rightarrow Low interferences between nodes
- *High number of communicating nodes in a small area
- *CMOS 65 nm technology \rightarrow Low power consumption, Low cost

Soc IR-UWB @ 60GHz

Architecture of 60GHz Front-end

Transmitter

JItra low power 60GHz Transmitter

***Power consumption = 53**mW

✤Conversion gain > 5dB @60GHz

Bandwidth ~10 GHz

Size: 0.6 mm²

UWB transmission using 60Hz transmitter

Performances of the system

• Single tone bandwidth ~ 15 GHz

_ow power 60GHz CMOS 65 nm receiver Base band

*****Power consumption = 43 mW

Max conversion gain ~ 30dB

Size: 0.55 mm²

System integration for wireless sensor communicating node

Flexible substrate integration

- -Technological choice: material selection, technological process set-up
- 60GHz electrical interconnections: Design and fabrication of test structures

LAAS-CNRS Laboratoire d'Analyse et d'Architecture des Systèmes

Structures under test

Flip Chip Characterization

Bump ~ 15 mΩ RF loses < 1 dB

LAAS-CNRS Laboratoire d'Analyse et d'Architecture des Systèmes

Toward low power 60GHz IR UWB communication systems and flexible substrate integration

 New 3D packaging : complete communicating node integration on flexible substrate.

MAC layer and IR-UWB PHY layer with DAC/ADC (≈50 mW)

AAS-CNRS ©

60GHz CMOS err mW today in our c

Antenna at 60Gl on flexible substrate

receiver (≈ 43mW

sign)

MAC layer and IR-UWB PHY layer with DAC/ADC (≈50mW)

Major advantage of flexible substrate integration : facility to deploy the WSN nodes for any application

Wireless Sensor Network solution proposed :

- * IR-UWB reconfigurable emitter and receiver developed on FPGA
- ★ Impulse radio UWB transceiver on ASIC developed → very low power
- Cross-layering MAC PHY
- Clock Synchronization
- * 60GHz architectures developed on ASIC in CMOS 65nm technology
- SoC Architectures flexible substrate integration
- ★ WSN simulator using UWB-impulse radio developed → determine the best network topology for one application

Thank you for your attention !

